If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+5x=100
We move all terms to the left:
10x^2+5x-(100)=0
a = 10; b = 5; c = -100;
Δ = b2-4ac
Δ = 52-4·10·(-100)
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{161}}{2*10}=\frac{-5-5\sqrt{161}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{161}}{2*10}=\frac{-5+5\sqrt{161}}{20} $
| -5x+6=15 | | 8/9y=-3 | | 2+3x5-4=13 | | -|x+4|+1=10 | | (8x-3)+5=40 | | -1/2(5w-8)=24 | | 2x-3/7=2 | | -|b+4|+1=10 | | -2(-3x-3)=42 | | -73-x=125+8x | | .25(100+p)=5 | | 2p+12=6p-0 | | 5/p=17.306/7.208 | | 6-(3x+9)=11 | | -12x-20=-10+120 | | (9x+1)(8x+9)=180 | | 2.6(t+12)=2(1.3t+2)+1.2 | | -90-5x=10x+105 | | 6x^2+23=201 | | 12c-3=15 | | 5–v=-4 | | 5=-6+3x | | 45=5×3+b | | -7x-9-2x=-54 | | 1.5(x-2)=0 | | 4/9=12/m | | -3(h-6)=5(2h=3) | | 4y+4y=8 | | -16(x-4)=48 | | 0.25(2x-16)-2=1 | | 7x-30=3x+66 | | 2*x+(x+4)/(x-1)=14 |